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Abstract

We show that the distributions of random coefficients in various discrete choice models

are nonparametrically identified. Our identification results apply to static discrete choice

models including binary logit, multinomial logit, nested logit, and probit models as well as

dynamic programming discrete choice models. In these models the only key condition we

need to verify for identification is that the type specific model choice probability belongs to

a class of functions that include analytic functions. Therefore our identification results are

general enough to include most of commonly used discrete choice models in the literature.

Our identification argument builds on insights from nonparametric specification testing. We

find that the role of analytic function in our identification results is to effectively remove

the full support requirement often exploited in other identification approaches, which is very

important for discrete choice models where the values of covariates are often bounded below

and above.
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1 Introduction

Modeling heterogeneity in preferences of economic agents has been of significant interests in both

theoretical and empirical studies where otherwise identical agents behave differently when faced

with identical choice environments. A growing econometric literature has addressed this problem

by providing estimators that allow the coefficients of the economic model to vary across agents.

Random coefficients have been popularly used to address this individual heterogeneity. For

recent work in discrete choice estimations with random coefficients including consumer demands,

see (e.g.) Berry, Levinsohn, and Pakes (1995), Nevo (2001), Petrin (2002), Rossi, Allenby, and

McCulloch (2005), Lewbel (2000), Burda, Harding, and Hausman (2008), McFadden and Train

(2000), Briesch, Chintagunta, and Matzkin (2010), Hoderlein, Klemela, and Mammen (2010),

and Gautier and Kitamura (2013). However, identification studies on random coefficient models,

which can be applied to various discrete choice models - as commonly used in empirical studies

- still have been scarce with only a few exceptions. Moreover, there has been no unifying

identification framework that can be generally applied to a variety of discrete choice models. In

this paper we provide one such important result.

Building on insights from nonparametric specification testing literature (e.g. Stinchcombe

and White 1998, Bierens 1982, 1990) we show that the distributions of random coefficients in

discrete choice models are nonparametrically identified if the type specific choice probability

satisfies the property that the span of the type specific choice probabilities is weakly dense in

the space of bounded and continuous functions. We then show that this identification condition

is satisfied under three conditions. The first is that the type specific model choice probability is

a real analytic function and the support of the distribution of covariates (e.g. characteristics of

products) is a nonempty open set. The second is that the function inside the type specific choice

probability is monotonic in each element of the covariates vector that has random coefficients.

This condition is trivially satisfied for static discrete choice models with index restrictions.

Importantly we verify this monotonicity condition also holds for dynamic discrete choice models.

Therefore, the second condition is not restrictive for most of discrete choice models that are

commonly used in the literature. The third and last condition is that we need at least one

value of covariates such that the type specific choice probability does not depend on random

coefficients at this particular value of covariates. To satisfy this condition we can typically let

the covariates include the value of zero or re-center the covariates at zero. We find these three

identifying conditions are satisfied for a class of discrete choice logit models including binary

choice, multinomial choice, nested logit, and dynamic programming discrete choice models. The

required condition of being a real analytic function is sufficient but not necessary. As an example

we find that the distribution of random coefficients in the probit model is also nonparametrically

identified but the probit function is not analytic.

Our identification argument differs from the “identification at infinity” using a special co-
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variate (e.g. Lewbel 2000) and from the Cramer-Wold device (e.g. Ichimura and Thompson

1997). Berry and Haile (2010) also provide an important identification result for discrete choice

models but they require a special covariate and its full support condition while they do not

use the logit structure. Moreover, their identification objects of interest do not include the

distribution of random coefficients. In our opinion, the main concern with the special regres-

sor is the requirement for large support. Large supports are sometimes acceptable but not

often supported in typical datasets used in discrete choice estimation. Our study focuses on

the nonparametric identification of distribution of random coefficients while our identification

strategy explicitly resorts to the logit or the probit error structure, as is common in empirical

work.1 This parametric assumption on the distribution of the choice-specific errors does away

with the need for large support assumptions. The entire distribution of random coefficients can

be identified using only local variation in characteristics. The framework we use is similar to

Fox, Kim, Ryan, and Bajari (2012) but their results are only specific to the static multinomial

logit model and our framework extends to other discrete choice models including nested logit,

probit, and dynamic discrete choices. To our knowledge, our work is the first paper to formally

show the nonparametric identification of random coefficients in dynamic programming discrete

choice models. Our identification results are general enough to include most of commonly used

discrete choice models and also can be used to develop a sieve approximation based estimator

of the nonparametric distribution as in Fox, Kim, and Yang (2013). Although our identification

results are not constructive, the results can be used to verify identification conditions for the

consistency of the sieve approximation based estimator in Fox, Kim, and Yang (2013).

The organization of the paper is as follows. In Section 2 we review various discrete models

that fit into our identification framework. Section 3 develops the identification theorems. In

Section 4 we show that the identification conditions are satisfied for various static discrete choice

models. In Section 5 we show the identification conditions hold for the dynamic discrete choice

model. In Section 6 we conclude. Technical details are gathered in the Appendix.

2 Discrete Choice Models with Random Coefficients

Here we review various examples of discrete choice models with random coefficients to which

our identification theorems in Section 3 are applied. These models are mostly commonly used

in empirical studies.

2.1 Logit model with individual choices

The motivating example is the multinomial logit discrete choice - including binary choice -

with random coefficients where agents i = 1, . . . , N can choose between j = 1, . . . , J mutually

1Other important identification studies in static discrete choice models include Briesch, Chintagunta, and
Matzkin (2010), Chiappori and Komunjer (2009), Gautier and Kitamura (2013), and Fox and Gandhi (2010) but
their modeling primitives are all different from our focus in this paper.
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exclusive alternatives and one outside option (e.g. outside good). The random coefficients logit

model was first proposed by Boyd and Mellman (1980) and Cardell and Dunbar (1980).

In the random coefficients model, the preference parameter βi is distributed by F (β) and is

independent of the exogenous covariates. The exogenous covariates for choice j are in the K× 1

vector xi,j. We let xi = (x′
i,1, . . . , x

′
i,J). This distribution F (β) is the object of our interest. In

the random utility model, agent i of type βi has her utility of choosing alternative j is equal to

ui,j = α+ x′
i,jβi + ǫi,j (1)

where α is the non-random constant term, so this model does not allow random coefficient for

the constant term. Assume that ǫi,j is distributed as Type I extreme value including an outside

good with utility ui.0 = ǫi,0 and agents are the utility maximizers. Then the outcome variable

yi,j is defined as

yi,j =





1 if ui,j > ui,j′ for all j′ 6= j

0 otherwise
.

The type specific choice probability of taking choice j at xi is

gj(xi, β, α) =
exp(α+ x′

i,jβ)

1 +
∑J
j′=1 exp(α+ x′

i,j′β)
.

In the data we observe the conditional choice probability of the mixture P (yi,j = 1|xi) and the

logit model implies that

P (yi,j = 1|xi) =

∫
gj(xi, β, α)dF (β) =

∫ exp(α+ x′
i,jβ)

1 +
∑J
j′=1 exp(α+ x′

i,j′β)
dF (β). (2)

Our key question is whether we can identify F (β) from the observed P (yi,j = 1|xi) and the type

specific model choice probability gj(xi, β, α) in (2). In Section 4.1 we show F (β) is identified for

this multinomial logit model.

2.2 Nested logit model with individual choices

We consider a nested logit model with the following random utility

ui,j,l = z′
i,jγi + x′

i,j,lβj,i + ǫi,j,l

for l = 1, . . . , Lj choices per group j with j = 1, . . . , J groups of choices and j = 0 being the

outside good (ui,0 = ǫi,0) where zi,j denotes the group specific covariates while xi,j,l denotes the

choice specific covariates. Let zi = (z′
i,1, . . . , z

′
i,J) and xi = (x′

i,1,1, . . . , x
′
i,1,L1

, . . . , x′
i,J,LJ

).

The nested logit model allows individual tastes to be correlated across products in each

group. The error terms follow a generalized extreme value distribution (McFadden 1978) of the
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form

F (ε) = exp



−
J∑

j=0




Lj∑

l=1

exp(−εj,l/ρj)




ρj





where ρj reflects the correlation between εj,l and εj,l′ as ρj =
√

1 − Corr[εj,l, εj,l′ ] for all l 6= l′and

(L0 = 1, ρ0 = 1) for the outside good.

The type specific choice probability of taking choice l in the j category at (zi, xi) is

gj,l(zi, xi, γ, β, ρ) =
exp

(
z′
i,jγ + ρj log

(∑Lj

l′=1 exp(x′
i,j,l′βj/ρj)

))

∑J
j′=0 exp

(
z′
i,j′γ + ρj′ log

(∑Lj′

l′=1 exp(x′
i,j′,l′βj′/ρj′)

))
exp(x′

i,j,lβj/ρj)
∑Lj

l′=1 exp(x′
i,j,l′βj/ρj)

where β = (β′
1, . . . , β

′
J ) and ρ = (ρ1, . . . , ρJ). We have

P (yi,j,l = 1|zi, xi) =

∫
· · ·

∫
gj,l(zi, xi, γ, β, ρ)dFγ (γ)dFβ1

(β1) · · · dFβJ
(βJ ) (3)

where Fγ(γ) and Fβj
(βj)’s are distribution functions of γ and βj ’s, so we assume γ and βj ’s are

independent each other while we allow distributions of components inside βj ’s can be dependent.

In Section 4.2 we show that the distribution of random coefficients Fγ(γ) and Fβj
(βj)’s are

identified for this nested logit model.

2.3 Probit model with binary choice

When ǫi,j in (1) follows a standard normal distribution with J = 1 and ui.0 = 0. The model

becomes a probit binary choice. We have

P (yi,1 = 1|xi,1) =

∫
Φ(α+ x′

i,1β)dF (β)

where Φ(·) denotes the CDF of standard normal. In Section 4.3 we show this probit model is

also identified.

2.4 Logit model with aggregate data

The multinomial logit model can be used when data only on market shares sj’s are available

but individual level data are not. We assume the utility of agent i is

ui,j = α+ x′
jβi + ǫi,j

where β is distributed by F (β). In this case the logit model implies

sj =

∫
gj(x, β, α)dF (β) =

∫ exp(α+ x′
jβ)

1 +
∑J
j′=1 exp(α+ x′

i,j′β)
dF (β).
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2.5 Dynamic discrete choice models

We consider the identification of distribution of random coefficients in dynamic discrete choice

models (e.g. Rust 1987, 1994) - note that the original models of Rust do not have random

coefficients. We assume that per period utility of agent i in a period t from choosing action

d ∈ D is

ui,d,t = x′
i,d,tθ + ǫi,d,t.

The error term is iid extreme value across agents, choices, and time periods and possibly a subset

of θ, β is distributed as F (β). We let xi,t = (x′
i,1,t, . . . , x

′
i,|D|,t). The type specific conditional

choice probability is

gd(xi,t, θ) =
exp(v(d, xi,t, θ))

∑|D|
d′=1 exp(v(d′, xi,t, θ))

(4)

where v(d, xi,t, θ) denotes Rust’s choice-specific value function.

As an illustration consider a dynamic binary choice model of Rust (1987) where the condi-

tional choice probability of taking an action “1” is given by

g1(x, β, α) =
exp{x′β + δEV (x, 1;β, α)}

exp{α+ δEV (x, 0;β, α)} + exp{x′β + δEV (x, 1;β, α)}
(5)

=
exp{x′β + δ [EV (x, 1;β, α) − EV (x, 0;β, α)]}

exp{α} + exp{x′β + δ [EV (x, 1;β, α) − EV (x, 0;β, α)]}
(6)

and EV (x, d;β, α) is given by the unique solution to the Bellman equation

EV (x, d;β, α) =

∫

y
log

{
exp{y′β + δEV (y, 1;β, α)} + exp{α+ δEV (y, 0;β, α)}

}
π(dy|x, d) (7)

with the transition density π(dy|x, d). Note that although the distribution of β does not depend

on x, the evolution of the state variable x over time depends on the type specific value β. This is

because individuals having the same xi,t = x̃ at time t but having different β’s will make different

choices at time t and their states in the following time periods will be different. However, we

note that in the evaluation of value functions in (7), we need only the transition density of states

and this transition density is independent of β given D because β affects the transition of states

only through the choice d. Therefore, the transition density π(dy|x, d) is not a function of β,

which is typically identified in a pre-stage of estimation.

In Rust (1987)’s bus engine replacement example, d = 0 denotes the replacement of an

engine, α denotes the scrap value, and β is the unit operation cost with mileage equal to x.

When the random coefficient β is distributed with F (β), we have

P (1|x) =

∫
g1(x, β, α)dF (β) (8)

where P (1|x) is the true (population) conditional choice probability.
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We study identification of these dynamic discrete choice models with random coefficients in

Section 5.

3 Identification

In a general framework we develop nonparametric identification of the distribution of random

coefficients F (β) in discrete choice models. We then apply the results to the models of Section 2.

The econometrician observes covariates or characteristics x and the probability of some discrete

outcome indicators y, denoted by G (x). Since our leading example is discrete choice models,

we interpret G(x) as the conditional choice probability and let g (x, β) be the probability of an

agent with the random coefficient β taking the choice. We assume that β and x are independent.

Our goal is to identify the distribution function F (β) in the equation

G (x) =

∫
h (x, β) dF (β) (9)

where h (x, β) is a known function of (x, β). Identification means a unique F (β) solves this

equation for all x. Let G0 (x) denote the true function of G (x) and let F0 (β) denote the true

function of F (β) such that

G0 (x) =

∫
h (x, β) dF0(β).

Then the identification means for any F1 6= F0, we must have G1 6= G0. Because G0(x) = E[y|x]

is nonparametrically identified, we focus on the identification of F0 below treating G0 is known.

To formalize the notion of identification we develop notation as follows. First let ρ be any

metric on the space of finite measures inducing the weak convergence of measures. For example,

this includes the Lévy-Prokhorov metric for distribution functions. Further define

H =
{
h(x, β) : R2K → R : x ∈ X ⊂ R

K , β ∈ B ⊂ R
K

}
.

Note that h ∈ H is read as a function of β given x and is also a function of x given β. Then the

identification means F1 = F0 in the weak topology if and only if
∫
hdF1 =

∫
hdF0 for all h ∈ H.

Let C(B) be the set of continuous and bounded functions on B, the support of F (β). We let

F(B) be the set of continuous and bounded distribution functions, supported on B. We further

let G(X ) be the space of continuous and bounded functions on X , generated by the mixture

of (9) and assume every G ∈ G(X ) is measurable with a measure µ. We let F(B) be endowed

with the metric ρ(F0, F1) for F0, F1 ∈ F(B) and G(X ) be endowed with the metric d(G1, G2) for

G1, G2 ∈ G(X ). We also assume that every h ∈ H is measurable with respect to F ∈ F(B) for

almost every x ∈ X . Finally let spH denote the span of H.

Now suppose H satisfies that for all h ∈ C(B), for all F ∈ F(B), and for all δ > 0, we can
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find a h′ ∈spH such that ∣∣∣∣
∫
h′dF −

∫
hdF

∣∣∣∣ < δ. (10)

Then by the definition of the span and the linearity of the integral, the condition (10) implies

that F1 = F0 (in the weak topology) if and only if
∫
hdF1 =

∫
hdF0 for all h ∈ H. This is

because the condition
∫
hdF1 =

∫
hdF0 for all h ∈ H becomes equivalent to

∫
hdF1 =

∫
hdF0

for all h ∈ C(B) under (10). This means that our identification condition is equivalent to the

condition that the linear span of H is weakly dense in C(B). We will show that some class of

functions of h(x, β) satisfy this weak denseness. We then show the type specific model choice

probabilities of various discrete choice models - commonly used in empirical studies - belong to

this class. Therefore, characterizing the class of functions h(x, β) that satisfy the weak denseness

becomes our tool for identification of the distribution of random coefficients.

3.1 Identification with known support of the distribution

First we consider the identification problem when the support of the distribution of the random

coefficients B is known. Then we relax this arguably strong assumption in Section 3.3. We

define our notion of identification formally.

Definition 1. For given F 6= F0, h ∈ H distinguishes F if d(G,G0) 6= 0. If for any F (6= F0) ∈ F

there exists a distinguishing h ∈ H, then H is totally distinguishing. If for any F (6= F0) ∈ F ,

all but a negligible set of h ∈ H are distinguishing, then H is generically totally distinguishing.

The implication of H being generically totally distinguishing is that then F0 is identified on

any subset X̃ ⊂ X with µ(X̃ ) 6= 0.

We note that this notion of identification is closely related to the notion of revealing and

totally revealing in the consistent specification testing problem of Stinchcombe and White (1998)

and works of Bierens (1982, 1990). We first lay out our identification theorem below (Theorem

1) and note that its proof is closely related with Theorem 2.3 in Stinchcombe and White (1998)

since the class of H that is generically totally revealing in Stinchcombe and White (1998) is

generically totally distinguishing in our problem of identification.

But there are several important differences need to be pointed out. First their problem is a

consistent specification testing where the index set B and draw of β’s (not necessarily random)

are arbitrary choices of a researcher, so the distribution of β is not of their interest at all but

our problem is the identification of the distribution of β. Second we switch the role of x and β

in the specification testing problems such that x’s in X now generate the functions in H. The

last key difference is that for our identification result we do not need to restrict the function

h(x, β) to take the form of h(x, β) = g(x1 + x̃′β) (i.e., affine in β). This requires a normalization

of coefficient for (e.g.) a special regressor x1. This will be replaced by the requirement that X

includes at least one value x∗ such that h(x, β) does not depend on the random coefficients β at

x∗ in our identification. Note that without loss of generality, following our leading example of
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the logit models, we can take x∗ = 0 or re-center x at zero such that {0} ⊂ X for linear index

models of the form h(x, β) = g(x′β). Our first identification theorem becomes

Theorem 1. Let Hg = {h : h(x, β) = g(x′β), x ∈ X } where (i) X ⊂ R
K is a nonempty open

set, (ii) {0} ⊂ X , and (iii) g is real analytic. Suppose B is known. Then Hg is generically totally

distinguishing if and only if g is non-polynomial. Moreover, Hg is also totally distinguishing.

Proof. Theorem 1 is implied by Theorem 3 below and hence the proof is omitted. We prove

only Theorem 3 in Section 3.4.

In the theorem we restrict our attention to the class of models with the linear index inside

the model choice probability of the form g(x′β), which is general enough to include all static

discrete choice models we consider in Section 2 and we extend to a class of functions that allow

for dynamic discrete choice models in Section 5. An important implication of the linear index

is that the term inside the model choice probability is monotonic in each element of x that has

random coefficients. This monotonicity is exploited in the proof of the theorem. In the theorem

the conditions (i) and (ii) are typically assumed in the models we consider, so we need to verify

only the condition of g being real analytic. Real analytic functions include (e.g.) polynomials,

exponential functions, and logit-type functions. A formal definition of real analytic function is

given as

Definition 1. A function g (t) is real analytic at c ∈ T ⊆ R whenever it can be represented

as a convergent power series, g (t) =
∑∞
d=0 ad (t− c)d, for a domain of convergence around c.

The function g (t) is real analytic on an open set T ⊆ R if it is real analytic at all arguments

t ∈ T .

Theorem 1 implies that limn→∞ ρ(Fn, F0) = 0 if and only if limn→∞ d(Gn, G0) = 0. Note

that limn→∞ ρ(Fn, F0) = 0 implies limn→∞ d(Gn, G0) = 0 is obvious when the convergence

in the metric ρ is equivalent to the weak convergence of measures. For example, this holds

for the Lévy-Prokhorov metric if the metric space (B, τ) is separable where τ is a metric on

the set B. Theorem 1 implies that the opposite is also true as long as µ(X ) 6= 0. Therefore

this identification result is also useful to show the consistency of a sieve approximation based

estimator of F0 as in Fox, Kim, and Yang (2013). Also note that in Theorem 1 we do not require

X = R
K . Therefore our identification result is different from the identification at infinity and is

also different from the Cramer-Wold device.

3.2 Identification with fixed coefficients

Note that when a subset (at least one) of coefficients are not random, then the identification of

the distribution of random coefficients is also obtained because we can let

h(x, β) = g(x′
1β1 + x′

2β2)
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and treat this is affine in β2 where β1 is fixed parameters and β2 are random coefficients. Our

identification strategy of this case applies in two stages. The identification of homogenous

coefficients is trivial when x2 can take the value of zero. At x2 = 0, the model becomes discrete

choice models with homogeneous parameters only and their identification is a standard problem.

To give further details note that in a first stage of an auxiliary argument we identify the true

β0
1 using the relationship from (9) as

G0 (x1, 0) =

∫
h (x1, 0, β1, β2) dF0(β2) =

∫
g(x′

1β1)dF0(β2) = g(x′
1β1).

Then because G0 (x1, 0) is known we can identify β0
1 from the inverse function of the relationship

above, typically using a regression. Therefore, in this case we can treat β0
1 as being known and

focus on the identification of F0(β2). Then the identification of F0(β2) follows from the corollary

below:

Corollary 1. Let HgA
= {h : h(x, β) = g(x′

1β1 +x′
2β2), x ∈ X } where (i)X ⊂ R

K is a nonempty

open set, (ii) includes values of the form{(x1, 0)}, and (iii) g is real analytic. Suppose β1 are fixed

coefficients and the support of F (β2), B2 is known. Then HgA
is generically totally distinguishing

if and only if g is non-polynomial. Moreover, HgA
is also totally distinguishing.

Proof. Corollary 1 is a direct application of Theorem 1 or Lemma 3.7 in Stinchcombe and White

(1998) because g(x′
1β1 + x′

2β2) is affine in β2 given β1.

Below we focus on the models with random coefficients only because all theorems we develop

will apply to the models with a subset of fixed parameters after a first stage of identifying the

fixed parameters is applied.

3.3 Identification with unknown support of the distribution

Often we do not know the support of F , B. For this reason, it will be useful to strengthen the

identification result when the mixture in (9) is generated by any compact subset B. We define

this stronger notion of identification as

Definition 2. H is completely distinguishing if it is totally distinguishing for any distribution

F (6= F0) ∈ F supported on any compact B.

The implication of H being completely distinguishing is that F0 is identified on any compact

support B while the support of x X is particularly given. We apply this notion of identification

to the class of functions Hg = {h : h(x, β) = g(x′β), x ∈ X }.

As discussed in Stinchcombe and White (1998) whether Hg is totally distinguishing is equiv-

alent to whether the linear span of Hg defined below is weakly dense in C(B). We define the
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linear spaces of functions, spanned by Hg as

Σ(Hg,X ,B) =




h : B → R|h(β) = γ0 +

∑L
l=1 γlg(x

(l)′β), γ0, γl ∈ R,

x(l) ∈ X ⊂ R
K , l = 1, . . . , L.





When X = R
K , the totally distinguishing property is not surprising. More interesting result is

obtained when X is a subset of RK . In the proof of Theorem 3 below, we show that Σ(Hg,X ,B)

is weakly dense in C(B) and so the identification result follows also with any nonempty open

subset X of RK .

The difference between spHg(X ) and Σ(Hg,X ,B) is that spHg(X ) does not include the

constant functions while Σ(Hg,X ,B) does. But the difference disappears when X includes {0}

or an x∗ such that g(x∗′β) does not depend on β and g(x∗′β) 6= 0. Therefore, in this case

spHg(X ) becomes dense in C(B), which is our key argument for identification. Stinchcombe

and White (1998) achieves the same goal of showing spHg(X ) is equivalent to Σ(Hg,X ,B) by

assuming g(x′β) is affine in β.

For Hg, it then becomes completely distinguishing when Σ(Hg,R
K ,B) (so X = R

K) is

uniformly dense in C(B) for any compact B. This uniform denseness is satisfied as long as

for the non-polynomial function g(t), there exists an interval t ∈ [a, b] such that g is Riemann

integrable in [a, b] and is continuous on [a, b] due to Hornik (1991). Also see Lemma 3.5 in

Stinchcombe and White (1998).

Theorem 2. Let X = R
K and Hg = {h : h(x, β) = g(x′β), x ∈ X } where g is Riemann

integrable and continuous on ∃[a, b] and non-polynomial. Then Hg is completely distinguishing.

Proof. The theorem follows from spHg = Σ(Hg,R
K ,B) and by Lemma 3.5 in Stinchcombe and

White (1998).

Theorem 2 show that a wide class of functions g - that include all of the discrete choice models

we consider in Section 2 - can identify the distribution of random coefficients as long as we have

the full support condition, X = R
K but this full support condition is very strong requirement.

Also note that we have not seen any role of analytic function in the identification because any

non-polynomial real analytic function satisfies the requirement on g in Theorem 2. The following

theorem shows that we can relax the full support condition for the identification when g is real

analytic. This includes exponential functions and more importantly logit functions.

This also reveals the role of analytic function in the identification. It effectively removes the

full support requirement, which is very important for discrete choice models where the values of

covariates are bounded below and above.

Now we show the above completeness result is generically true for any nonempty open subset

X ⊂ R
K when the function g is analytic. We further define
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Definition 3. H is generically completely distinguishing if and only if it is totally distinguishing

for any open set X with nonempty interior and for any distribution F (6= F0) ∈ F supported on

any compact B.

Theorem 3. Hg is generically completely distinguishing when {0} ⊂ X if and only if g is real

analytic and is not a polynomial.

Proof. See Section 3.4 for the proof.

Theorem 3 is most general and is our main theorem. Note that this identification result

also holds for models with a subset of coefficients (at least one) being not random because all

theorems we develop apply to the models with a subset of fixed parameters after a first stage of

identifying the fixed parameters is applied.

Corollary 2. Let HgA
= {h : h(x, β) = g(x′

1β1 + x′
2β2), x ∈ X } where g is a real analytic

non-polynomial function, {(x1, 0)} ⊂ X , and β1 are fixed coefficients. Then HgA
is generically

completely distinguishing.

Proof. See Appendix B for the proof.

3.4 Proof of Theorem 3

Because Theorem 3 implies Theorem 1 with the known support B, we only prove Theorem 3.

We first show that for Hg, the generic completeness is equivalent to the condition that for every

X with nonempty interior, Σ(Hg,X ,B) is uniformly dense in C(B) for any compact B.

Lemma 1. The class Hg is generically completely distinguishing if and only if for every open

set X with nonempty interior, Σ(Hg,X ,B) is uniformly dense in C(B) for any compact B.

In the proof we use the fact that x′β is monotonic in each element of x. By construction

of the linear index, this monotonicity is trivially satisfied for the static discrete choice models.

For the dynamic discrete choices, to apply the theorem, we need to verify the choice specific

continuation payoffs function EV (x, d;β, α) is monotonic in each element of x and we verify this

in Section 5.

Then, we show that

Lemma 2. Hg is generically completely distinguishing if and only if it is completely distin-

guishing when g is real analytic.

The most important implication of Lemma 2 is that we have only to show the identification

at a particular choice of X . According to Lemma 2, then the identification must also hold for

any X with nonempty interior. This result facilitates applications of the identification argument

substantially because one can take the full support X = R
K under which the identification is

often easier to show (see e.g. Fox, Kim, Ryan, and Bajari 2012). Note that verifying identification
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with X = R
K does not mean we indeed require the true data should have the full support. It

only means that if one shows identification as if X = R
K , then identification must also hold for

any X with nonempty interior, which includes the real data situation.

Finally combining Lemma 1 and 2 we conclude that Theorem 3 holds because Hg is com-

pletely distinguishing as long as g is real analytic by Theorem 2. In the appendix we prove

Lemma 1 and Lemma 2.

3.5 Identification with non-analytic functions

We also find that the class of functions that is generically completely distinguishing is not

limited to analytic functions. Other class of functions that satisfy the following condition is also

generically completely distinguishing. This includes the normal cumulative distribution function.

Therefore the distribution of random coefficients in the probit model is also nonparametrically

identified.

Theorem 4. Suppose that sp{dpg(t), 0 ≤ p < ∞|t ∈ T } is dense in C(R) for any nonempty

open subset T ⊂ R containing {0} with g(·) infinitely differentiable. Then for any open set

X ⊂ R
K with nonempty interior, the span Σ(Hg,X ,B) is uniformly dense in C(B) for any

compact B, so Hg is generically completely distinguishing.

Proof. Theorem 4 trivially follows from Theorem 3.10 in Stinchcombe and White (1998).

4 Identification for Static Discrete Choice Models

We verify identification conditions for the examples of static discrete choice models we consider

in Section 2. Because other conditions for identification are either trivially satisfied or can be

directly assumed, we focus on showing the type specific model choice probability function is

either being real analytic - as the key condition in Theorem 3 - or belongs to other class of

generically completely distinguishing as in Theorem 4.

4.1 Logit model with individual choices

For the multinomial logit model (2) our identification argument on F (β) proceeds after we

recover the constant term α from a first stage using an auxiliary argument that does not depend

on β. A similar strategy was used in Fox, Kim, Ryan, and Bajari (2012) to identify homogenous

parameters in a first stage. The typical strategy is using the observed choice probability at xi = 0

where we have P (yi,j = 1|xi = 0) = exp(α)
1+J exp(α) . Because P (yi,j = 1|xi = 0) is nonparametrically

identified from the data, α is also identified from the inverse function. Below we focus on the

identification of F (β) assuming α is identified in the first stage. With abuse of notation we write

gj(xi, β) = gj(xi, β, α
0) where α0 denotes the true value of α.
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In Section 3 we have shown that the key identification condition of F (β) is that (i) gj(xi, β)

is real analytic, (ii) the support of distribution xi, X has nonempty interior, and (iii) X includes

at least one value of x = x̃ such that gj(x̃, β) 6= 0 does not depend on β. We assume the

condition (ii). To satisfy the condition (iii) simply we can take x̃ = 0 in static discrete choice

models where the covariates are re-centered at zero. For a binary logit model, it is obvious that

gj(xi, β) is real analytic, so the condition (i) is also satisfied. For the multinomial logit case too

we can show that gj(x, β) is real analytic as follows. Pick a particular j and let xj′ = 0 for all

j′ 6= j. Then we have gj(xi, β) =
exp(x′

i,jβ)

exp(−α0)+J−1+exp(x′

i,jβ)
, which has the form Gη(t) ≡ exp(t)

η+exp(t) for

some η and hence gj(xi, β) is real analytic because the exponential function is real analytic and

the function gj(xi, β) is formed by the addition and division of never zero real analytic functions

(Krantz and Parks 2002).

4.2 Nested logit model with individual choices

First we show ρj - that reflects the correlation between goods for each group - is identified from

an auxiliary step. Note that where zi = 0 and xi = 0, we have

P 0
j,l ≡ P (yi,j,l = 1|zi = 0, xi = 0) = gj,l(0, 0, γ, β, ρ) =

exp (ρj log (Lj))∑J
j′=0 exp

(
ρj′ log

(
Lj′

))
1

Lj
.

It follows that Lj · P 0
j,l =

exp(ρj log(Lj))∑J

j′=0
exp(ρj′ log(Lj′))

and therefore log(Lj · P 0
j,l) − log(L0 · P 0

0,l) =

ρj log(Lj), from which we identify ρj for j = 1, . . . , J as

ρj = {log(Lj · P 0
j,l) − log(L0 · P 0

0,l)}/ log(Lj)

because P 0
j,l and Lj are directly observable from data for all j, l. Below we treat ρj ’s as known.

In the nested logit model of (3) we focus on showing gj,l(zi, xi, γ, β, ρ) is a real analytic

function. Other conditions for identification in Section 3 are trivially satisfied or directly assumed

as in the multinomial logit case.

Now pick a particular j and let zj′ = 0 for all j′ 6= j ∈ {0, 1, . . . , J} and let xj,l = 0 for all j

and l. Then we have

gj,l(zi, xi, γ, β, ρ) =
exp

(
z′
i,jγ + ρj log(Lj)

)

∑
j′ 6=j exp (ρj′ log (Lj′)) + exp

(
z′
i,jγ + ρj log(Lj)

) 1

Lj

=
exp

(
z′
i,jγ

)

∑
j′ 6=j exp (ρj′ log (Lj′) − ρj log (Lj)) + exp

(
z′
i,jγ

) 1

Lj
=

exp
(
z′
i,jγ

)

η + exp
(
z′
i,jγ

) 1

Lj

where we let η =
∑
j′ 6=j exp (ρj′ log (Lj′) − ρj log (Lj)) .

Therefore gj,l(zi, xi, γ, β, ρ) has the form as 1
Lj
Gη(t) = exp(t)

η+exp(t)
1
Lj

, so is an analytic function

as in the multinomial logit case (Krantz and Parks 2002). Therefore the distribution of the
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random coefficients γ is identified when zj also includes {0}. Now we turn to the identification

of the distribution of βj . Let zj = 0 for all j and let xj′,l′ = 0 for all j′ 6= j and l′ 6= l. Then we

have

gj,l(zi, xi, γ, β, ρ)

=
exp

(
ρj log

(
Lj − 1 + exp(x′

i,j,lβj/ρj)
))

∑
j′ 6=j exp

(
ρj′ log

(
Lj′

))
+ exp

(
ρj log

(
Lj − 1 + exp(x′

i,j,lβj/ρj)
))

×
exp(x′

i,j,lβj/ρj)

Lj − 1 + exp(x′
i,j,lβj/ρj)

=

(
Lj − 1 + exp(x′

i,j,lβj/ρj)
)ρj

∑
j′ 6=j exp

(
ρj′ log

(
Lj′

))
+

(
Lj − 1 + exp(x′

i,j,lβj/ρj)
)ρj

exp(x′
i,j,lβj/ρj)

Lj − 1 + exp(x′
i,j,lβj/ρj)

Because the product of analytic functions is also analytic, we have only to show the function

G̃η̃(t) =
(Lj − 1 + exp(t/ρj))

ρj

η̃ + (Lj − 1 + exp(t/ρj))
ρj

(where we write η̃ =
∑
j′ 6=j exp

(
ρj′ log

(
Lj′

))
) is analytic because

exp(x′

i,j,l
βj/ρj)

Lj−1+exp(x′

i,j,l
βj/ρj) is analytic

(it can be written as exp(t)
η+exp(t) for some η). G̃η̃(t) is also analytic as long as (Lj − 1 + exp(t/ρj))

ρj

is analytic because the reciprocal of an analytic function that does not take the value of zero at its

support is also analytic. Now note that (Lj − 1 + exp(t/ρj))
ρj is analytic because compositions

of analytic functions are analytic and Lj − 1 + exp(t/ρj) is strictly positive. Therefore we

conclude the distribution of random coefficients of βj is identified. Similarly we can show that

all the distributions of βj , j = 1, . . . , J are identified.

4.3 Probit model with binary choice

We assume the support of distribution of xi,1 includes {0} (or re-centered at zero). In a first

stage we identify α0 from P (yi,1 = 1|xi,1 = 0) = Φ(α0) at xi,1 = 0. Also Φ(·) does not depend

on β at xi,1 = 0 and Φ(α0) 6= 0. Finally although the normal CDF Φ(·) is not analytic, it is

infinitely differentiable and satisfies conditions in Theorem 4. Therefore the distribution F (β)

is identified in this case too.

4.4 Logit model with aggregate data

As the logit model with individual choices, by the similar argument, the distribution of random

coefficients is identified. The only difference is that in the individual choices we identify P (yi,j =

1|xi) from the data in an auxiliary step while in the aggregate data case, the conditional share

sj is the data.
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5 Identification for Dynamic Programming Discrete Choices

We have shown that the distribution of random coefficients is identified for static discrete choice

models. However, the theorems in Section 3 cannot be directly applied to the dynamic pro-

gramming discrete choice problems because the type specific model choice probabilities in these

models contain the choice specific continuation payoffs functions. In this section first we show

that the choice specific continuation payoffs function and so the choice specific value function

is monotonic in each element of covariates vector that have random coefficients. Then we show

that Theorem 3 can extend to the dynamic programming discrete choice problems based on this

monotonicity result.2

Following Rust (1994), let u(x, d, β, α) denote the per period utility of taking an action d in

the set of choices D(x) where x denotes the covariates or states variables with random coeffi-

cients, β denotes random coefficients, and α denotes homogeneous coefficients. Let EV (x, d;β, α)

denote the choice specific continuation payoffs function or the choice specific expected value

function. Then for the logit model the type specific choice probability of taking the action d

becomes

gd(x, β, α) =
exp{u(x, d, β, α) + δEV (x, d;β, α)}

∑
d′∈D(x) exp{u(x, d′, β, α) + δEV (x, d′;β, α)}

where the expected value function EV (x, d;β, α) of the logit model is given by the unique fixed

point that solves

EV (x, d;β, α) =

∫

y
log





∑

d′∈D(y)

exp{u(y, d′, β, α) + δEV (y, d′;β, α)}




 π(dy|x, d)

where π(dy|x, d) denotes the transition density depending on d. We note that

Lemma 3. Suppose the per period utility satisfies the linear index restriction, i.e., u(x, d, β, α)

depends on x′
dβ but does not depend on xd or β, separately. Then the choice specific continuation

payoffs function EV (x, d;β, α) is monotonic in each element of x.

Proof. See Appendix C for the proof. Note that the result and its proof are not specific to the

logit model.

Based on this monotonicity, next we obtain the identification of the distribution of random

coefficients for dynamic discrete choice models.

Theorem 5. Let gd(x, β, α) be the type specific choice probability of a dynamic discrete choice

problem. ThenHD
g = {h : h = gd(x, β, α), x ∈ X } is generically completely distinguishing when

{0} ⊂ X if and only if (i) gd is real analytic and is not a polynomial and (ii) the per period

utility u(x, d, β, α) satisfies the linear index restriction in Lemma 3.

2Theorem 1 also extends to the dynamic discrete choices because Theorem 3 implies Theorem 1.
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Proof. See Appendix D for the proof.

In the example of the dynamic binary choice model of (5)-(6), HD
g becomes

HD
g =

{
h : h = g1(x, β, α) =

exp{x′β + δEV (x, 1;β, α)}

exp{α+ δEV (x, 0;β, α)} + exp{x′β + δEV (x, 1;β, α)}
, x ∈ X

}

and we prove the identification theorem for the binary case in the appendix without loss of

generality because for the multinomial choices, we can let xd = 0 for d 6= 1. In the proof we

assume the discount factor δ, the scrap value α, and the transition density π(dy|x, d) are known

due to the following remark:

Remark 1. Rust (1987, 1994) and Magnac and Thesmar (2002) argue that it is difficult to

identify the discount factor δ, so we assume it is known. For the binary logit case the homo-

geneous parameter, scrap value α is identified at x = 0 from the observation that P (1|x =

0) =
∫
g1(0, β, α)dF (β)=

∫ 1
exp{α}+1dF (β) = 1

exp{α}+1 because from (7) we find EV (0, 1;β, α) =

EV (0, 0;β, α) (see also Rust 1987) - which is obvious because when x = 0 it does not matter

whether the bus engine is new or not. The transition density π(dy|x, d) is also nonparametri-

cally identified from the data. Therefore, we can focus on the identification of the distribution

of random coefficients.

6 Conclusion

We show that the distributions of random coefficients in various discrete choice models are

nonparametrically identified. Our identification results apply to both binary and multinomial

logit, nested logit, and probit models as well as dynamic programming discrete choices. To our

best knowledge, this is the first formal result to show the nonparametric identification of random

coefficients in the dynamic discrete choices.

We find that the distribution of random coefficients is identified if (i) the type specific model

choice probability belongs to a class of functions that include real analytic functions and the

support of the distribution of covariates is a nonempty open set, (ii) the term inside the type

specific choice probability is monotonic in each element of the covariates vector that has random

coefficients, and (iii) the type specific choice probability does not depend on random coefficients

at a particular value of covariates. We show that these conditions are satisfied for various discrete

choice models that are commonly used in the empirical studies. In our identification we stress

the role of analytic function that effectively removes the full support requirement often exploited

in other identification approaches, which is very important for discrete choice models where the

values of covariates are often bounded below and above.

Lastly, as a referee points out, our identification results can be used as basis for specification

testing. First note that our identification allows for the case of degenerated distribution (i.e.,
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coefficients are fixed parameters, not random) and hence can serve as a specification test for

a random coefficient model. Moreover, our results can be used as a specification test for the

specific choice model. Suppose a known ψ (x, β), with appropriate normalization, is incorrectly

used instead of the true h (x, β) in (9). Then since

G0(x) =

∫
h(x, β)dF0(β) =

∫
ψ (x, β)

h(x, β)

ψ (x, β)
dF0(β)

=

∫
ψ (x, β) dH(x, β)

for an H such that dH(x, β) = h(x,β)
ψ(x,β)dF0(β), if ψ (x, β) satisfies the identification conditions,

then any distribution function of β only - which is not a function of x - will be rejected from

our identification exercise. Therefore one can concludeψ (x, β) is incorrectly specified. Although

these specification tests seem promising based on our identification results, a formal development

should be addressed with further research.
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Appendix

A Proof of Lemma’s for Theorem 3

A.1 Proof of Lemma 1

Our proof will closely follow the proof of Lemma 3.7 in Stinchcombe and White (1998). We

prove Lemma 1 for dynamic discrete choice models in Section D. Lemma 1 for the static discrete

choice models with Hg can be proved by the essentially same arguments by taking the discount

factor δ = 0 i.e. we drop the continuation payoffs function EV (x, d;β, α) in the type specific

model choice probability.

A.2 Proof of Lemma 2

If Hg is generically completely distinguishing, it is also completely distinguishing by definitions.

Next we show the opposite is also true. If Hg is not generically completely distinguishing, we

can find a compact set B̃ and a nonempty open set X̃ such that Σ(Hg, X̃ , B̃) is not uniformly

dense in C(B̃). Then there exists a distribution F̃ 6= F0 supported on B̃ such that for all x ∈ X̃ ,

G̃(x) =
∫
g (x′β) d

(
F̃ (β) − F0(β)

)
= 0 by the Hahn-Banach theorem. We, however, note that

G̃(x) is real analytic because g(·) is and B̃ is compact. We further note that a real analytic

function is equal to zero on the open set X̃ if and only if it is equal to zero everywhere. This

implies that Hg is not completely distinguishing. Therefore if Hg is completely distinguishing,

it must be also generically completely distinguishing. This completes the proof.

In the proof G̃(x) is a multivariate function. According to Definition 2.2.1 in Krantz and

Parks (2002) a function ∆(x), with domain an open subset T ⊆ R
K and range R, is called

(multivariate) real analytic on T if for each x ∈ T the function ∆(·) may be represented by a

convergent power series in some neighborhood of x.

B Proof of Corollary 2

This can be proved similarly with the proof of Theorem 3 or the proof of Lemma 3.7 in Stinch-

combe and White (1998).

C Proof of Lemma 3

Proof. We prove the lemma for the dynamic binary choice without loss of generality. Let x̌(k)

be a vector of states that is equal to x except the k-th element. Let EṼ (x̌, d;β, α) denote the

value function when an agent having the covariates or states equal to x̌(k) takes a sequence of

choices that are optimal under the current state x. Without loss of generality we consider the
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case that βk, the k-th element in β is positive and x̌(k) ≥ x. Then we have

EṼ (x̌(k), d;β, α) ≤ EV (x̌(k), d;β, α)

because EV (x̌(k), d;β, α) is the value of the expected value function when an agent with the

states equal to x̌(k) takes a sequence of optimal choices by the definition of the value function

and EṼ (x̌(k), d;β, α) is from a non-optimal choices of actions. Next we note that

EV (x, d;β, α) ≤ EṼ (x̌(k), d;β, α)

because (i) for any time period the per period utility under x̌(k) is greater than or equal to the

per period utility under x and (ii) the agent takes the same sequence of choices under x and x̌(k)

in our definition of EṼ (x̌(k), d;β, α). Combining these two results, we conclude the monotonicity

because

EV (x, d;β, α) ≤ EV (x̌(k), d;β, α) whenever x̌
(k)
k ≥ xk.

Our choice of the k-th element is arbitrary and so this monotonicity result holds for any element

in x.

D Proof of Theorem 5

We prove this theorem by showing corresponding results to Lemma 1 and Lemma 2 hold for HD
g .

Lemma 2 holds trivially since the function g in HD
g is analytic. We focus on Lemma 1. We prove

this for the dynamic programming binary choice model of (5)-(6) without loss of generality. We

assume the discount factor δ is known. We also assume α is known since it can be identified

from an auxiliary step as discussed in Remark 1.

Define the linear spaces of functions, spanned by HD
g as

Σ(HD
g ,X ,B) =





h : B → R|h(β) = γ0 +

∑L
l=1 γlg(x

(l), β, α), γ0, γl ∈ R,

x(l) ∈ X ⊂ R
K , l = 1, . . . , L.




 .

If the uniform closure of spHD
g (X ) contains C(B), then that of Σ(HD

g ,X ,B) also must contain

C(B) since spHD
g (X ) ⊂ Σ(HD

g ,X ,B) by construction. Now suppose the uniform closure of

Σ(HD
g ,X ,B) contains C(B) for every compact B ⊂ R

K and suppose that X ⊂ R
K has nonempty

interior containing {0}. We will prove Theorem 5 by contradiction. We prove this for the

dynamic programming binary choice problem (say D = {0, 1}) without loss of generality because

for the multinomial choices, we can let xd = 0 for d 6= 1. We take g = g1 and let x = x1 below.

Now suppose that spHD
g (X ) is not dense in C(B) for some X and B. This happens if and

only if there exists a distribution function F 6= F0 (in the sense that ρ(F,F0) 6= 0) supported on

B such that for all x ∈ X ,
∫
g(x, β, α)d (F (β) − F0(β)) = 0.
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Let A be a compact subset of R
K containing an ǫ-neighborhood of B (in terms of the

Hausdorff metric) for some ǫ > 0. Pick δ > 0 and x̃ ∈ X such that S(x̃, 2δ), the ball of radius 2δ

around x̃, is contained in X . By assumption, Σ(HD
g , S(x̃, 2δ), A) is uniformly dense in C(A). It

follows that for every n ∈ N and for every strict subset Ã ⊂ A, some element of Σ(HD
g , S(x̃, δ), A)

is uniformly within n−1 of the continuous function

fn(β) := max{1 − n̺(β, Ã), 0}

where ̺(β, Ã) is the Hausdorff distance from β to the set Ã. By construction the sequence

fn(β) is uniformly bounded between zero and one and converges pointwise to the indica-

tor function 1
{
β ∈ Ã

}
. Therefore, as n goes to infinity,

∫
A f

n(β)d (F (β) − F0(β)) goes to
∫
Ã

1d (F (β) − F0(β)). Because each fn is in the span of HD
g (S(x̃, δ)) and 1, we can write

fn(β) = γ0,n +
L,n∑

l,n=1

γl,ng(x
(l,n), β, α) (11)

= γ0,n +
L,n∑

l,n=1

γl,n
exp{x(l,n)′β + δ

[
EV (x(l,n), 1;β, α) − EV (x(l,n), 0;β, α)

]
}

exp{α} + exp{x(l,n)′β + δ
[
EV (x(l,n), 1;β, α) − EV (x(l,n), 0;β, α)

]
}

where each x(l,n) ∈ S(x̃, δ). The key idea underlying this proof strategy is that we can stretch

out the functions fn without changing their integral against F (β) − F0(β), and then we show

this cannot happen unless F (β) = F0(β) for almost all β ∈ B.

Now we formalize the idea. Because
∫
g(x, β, α)d (F (β) − F0(β)) equal to zero for any el-

ement g ∈ HD
g (X ), we can let any x̌(l,n) substitute each x(l,n) in (11) without changing the

integral of fn(β) against F (β) −F0(β). Without loss of generality we can take Ã as a Cartesian

product of intervals
∏K
k=1

[
β
k
, βk

]
. Then, for each of K elements we can find a sequence of bl,nk

and cl,nk , k = 1, . . . ,K, in R
K such that

x(l,n)′b
(l,n)
k + δ

[
EV (x(l,n), 1; b

(l,n)
k , α) − EV (x(l,n), 0; b

(l,n)
k , α)

]
= β

k

and

x(l,n)′c
(l,n)
k + δ

[
EV (x(l,n), 1; c

(l,n)
k , α) −EV (x(l,n), 0; c

(l,n)
k , α)

]
= βk.

Because (i) S(x̃, δ) ⊂ S(x̃, 2δ) ⊂ X and (ii) the function x′β+ δ [EV (x, 1;β, α) − EV (x, 0;β, α)]

is monotonic in each element of x,3 now we can find some ηk ∈ (0, ǫ), k = 1, . . . ,K such that for

3Lemma 3 implies that the difference of the expected value function, EV (x, 1; β, α) − EV (x, 0; β, α) in (6) is
monotonic in each element of x because EV (x, 0; β, α) does not depend on x (Recall that “d = 0” denotes the
replacement of a bus engine). It also follows that the function x′β + δ [EV (x, 1; β, α) − EV (x, 0; β, α)] in (6) is
monotonic in each element of x.
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all (l, n)-pairs there exists x̌(l,n) ∈ X such that

x̌(l,n)′b
(l,n)
k + δ

[
EV (x̌(l,n), 1; b

(l,n)
k , α) −EV (x̌(l,n), 0; b

(l,n)
k , α)

]
= β

k
− ηk

and

x̌(l,n)′c
(l,n)
k + δ

[
EV (x̌(l,n), 1; c

(l,n)
k , α) − EV (x̌(l,n), 0; c

(l,n)
k , α)

]
= β

k
+ ηk.

In the sequence of functions {fn} defined in (11), replace each x(l,n) by the corresponding

x̌(l,n) and obtain a sequence of functions in Σ(HD
g ,X ,B), say {hn}. Then the sequence {hn}

converges pointwise to the indicator function 1
{
β ∈ Ãη

}
where Ãη =

∏K
k=1

[
β
k

− ηk, βk + ηk
]
.

Therefore, we find ∫

Ã
1d (F (β) − F0(β)) =

∫

Ãη

1d (F (β) − F0(β))

and this cannot be true unless F (β) = F0(β) for almost all β ∈ B because A contains an

ǫ-neighborhood of B. Based on this contradiction, we complete the proof.
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